References

[1]
S. Lie. Theorie der Transformationsgruppen I. Mathematische Annalen 16, 441–528 (1880).
[2]
H. F. Trotter. On the Product of Semi-Groups of Operators. Proceedings of the American Mathematical Society 10, 545–551 (1959).
[3]
S. K. Godunov. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik 89, 271–306 (1959).
[4]
D. D. Streeter Jr, H. M. Spotnitz, D. P. Patel, J. Ross Jr and E. H. Sonnenblick. Fiber orientation in the canine left ventricle during diastole and systole. Circulation research 24, 339–347 (1969).
[5]
D. Ogiermann, D. Balzani and L. E. Perotti. An Extended Generalized Hill Model for Cardiac Tissue: Comparison with Different Approaches Based on Experimental Data. In: Functional Imaging and Modeling of the Heart, edited by O. Bernard, P. Clarysse, N. Duchateau, J. Ohayon and M. Viallon (Cham, 2023); pp. 555–564.
[6]
J. Stålhand, A. Klarbring and G. A. Holzapfel. Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains. Progress in biophysics and molecular biology 96, 465–481 (2008).
[7]
S. Göktepe, A. Menzel and E. Kuhl. The Generalized Hill Model: A Kinematic Approach towards Active Muscle Contraction. Journal of the Mechanics and Physics of Solids 72, 20–39 (2014).
[8]
J. M. Guccione, L. K. Waldman and A. D. McCulloch. Mechanics of Active Contraction in Cardiac Muscle: Part II—Cylindrical Models of the Systolic Left Ventricle. Journal of Biomechanical Engineering 115, 82–90 (1993).
[9]
G. A. Holzapfel and R. W. Ogden. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, 3445–3475 (2009).
[10]
D. H. Lin and F. C. Yin. A Multiaxial Constitutive Law for Mammalian Left Ventricular Myocardium in Steady-State Barium Contracture or Tetanus. Journal of Biomechanical Engineering 120, 504–517 (1998).
[11]
J. D. Humphrey, R. K. Strumpf and F. C. Yin. Determination of a Constitutive Relation for Passive Myocardium: I. A New Functional Form. Journal of Biomechanical Engineering 112, 333–339 (1990).
[12]
J. M. Guccione, A. D. McCulloch and L. K. Waldman. Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model. Journal of Biomechanical Engineering 113, 42–55 (1991).
[13]
Y. Zheng, W. X. Chan, S. Nielles-Vallespin, A. D. Scott, P. F. Ferreira, H. L. Leo and C. H. Yap. Effects of myocardial sheetlet sliding on left ventricular function. Biomechanics and Modeling in Mechanobiology, 1–20 (2023).
[14]
S. Rossi, T. Lassila, R. Ruiz-Baier, A. Sequeira and A. Quarteroni. Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics. European Journal of Mechanics-A/Solids 48, 129–142 (2014).
[15]
R. Piersanti, F. Regazzoni, M. Salvador, A. F. Corno, C. Vergara and A. Quarteroni. 3D–0D closed-loop model for the simulation of cardiac biventricular electromechanics. Computer Methods in Applied Mechanics and Engineering 391, 114607 (2022).
[16]
S. Hartmann and P. Neff. Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. International journal of solids and structures 40, 2767–2791 (2003).
[17]
R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane. Biophysical journal 1, 445–466 (1961).
[18]
J. Nagumo, S. Arimoto and S. Yoshizawa. An active pulse transmission line simulating nerve axon. Proceedings of the IRE 50, 2061–2070 (1962).
[19]
P. Pathmanathan, J. M. Cordeiro and R. A. Gray. Comprehensive uncertainty quantification and sensitivity analysis for cardiac action potential models. Frontiers in physiology 10, 721 (2019).
[20]
F. Regazzoni, M. Salvador, P. C. Africa, M. Fedele, L. Dedè and A. Quarteroni. A cardiac electromechanical model coupled with a lumped-parameter model for closed-loop blood circulation. Journal of Computational Physics 457, 111083 (2022).
[21]
M. Hirschvogel, M. Bassilious, L. Jagschies, S. M. Wildhirt and M. W. Gee. A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: experiment-based parameter estimation for patient-specific cardiac mechanics. International journal for numerical methods in biomedical engineering 33, e2842 (2017).
[22]
D. Ogiermann, L. E. Perotti and D. Balzani. A simple and efficient adaptive time stepping technique for low-order operator splitting schemes applied to cardiac electrophysiology. International Journal for Numerical Methods in Biomedical Engineering (2023).
[23]
M. Potse, B. Dube, J. Richer, A. Vinet and R. M. Gulrajani. A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart. IEEE Transactions on Biomedical Engineering 53, 2425–2435 (2006).
[24]
D. Ogiermann, D. Balzani and L. E. Perotti. The Effect of Modeling Assumptions on the ECG in Monodomain and Bidomain Simulations. In: Functional Imaging and Modeling of the Heart, Vol. 12738, edited by D. B. Ennis, L. E. Perotti and V. Y. Wang (Cham, 2021); pp. 503–514.
[25]
R. Plonsey. Volume Conductor Fields of Action Currents. Biophysical Journal 4, 317–328 (1964).
[26]
D. Geselowitz. On the theory of the electrocardiogram. Proceedings of the IEEE 77, 857–876 (1989).